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PREFACE
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Center, Cambridge, Massachusetts in support of the Office of
Rail and Construction Technology, Office of Technology Develop-
ment and Deployment, Urban Mass Transportation Administration
of the U,S. Department of Transportation to investigate improved
track support systems.

The overall objective of this contract is to evaluate the
technical and economic feasibility of using concrete slab
systems for at-grade rapid transit track.

The report presents a world-wide review of details and
performance of slab track projects. Also, it compares features
of slab track systems with those of conventional ballasted
track. Methods of constructing slab track systems are also
discussed, In addition, a cost comparison between slab and
ballasted track systems is presented. Finally, recommendations
for future research efforts related to the development of
at-grade concrete slab track systems are presented.
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1. INTRODUCTION

The functions of a rail transit track system are to guide
railway vehicles and provide a safe and acceptable ride to
passengers. Traditionally, a track structure with cross ties
and ballast has been used for at-grade construction. Such
track systems utilize wood, monoblock concrete, or two-block
concrete ties as shown in Figures 1-1, 1-2, and 1-3, respec-
tively. These track systems experience permanent deformation
under loading due principally to consolidation and degredation
of ballast that occurs during track life. Therefore, mainten-
ance operations are required periodically to provide proper
surface and alignment.

Improved track systems with superior capabilities to those
of conventional track provide possible solutions to problems of
continuing and costly track maintenance. A slab track system
consisting of a continuous concrete support, subbase, and com-
pacted subgrade, as shown in Figure 1-4, is one example of such
improved track system. Rails are secured to the concrete sup-
port using fasteners that provide restraint to rail movements
and thus ensure proper gage and alignment.

Experience with concrete slab track systems in foreign
countries has shown that such track system results in decreased
maintenance and increased reliability of service, This experi-
ence also has indicated a generally higher initial cost of slab
track.

To evaluate the technical and economic feasibility of
using concrete slab track systems for at-grade rapid transit
track in the United States, a study was initiated by the Trans-
portation Systems Center of the Research and Special Programs
Administration in support of the Urban Mass Transportation
Adninistration of the U.S. Department of Transportation. The
study encompasses the following work items:

1. Identification of details and features of slab track

projects in the U.S., and abroad

Preceding Page Blank
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FIGURE 1-2. MONOBLOCK CONCRETE TIE TRACK
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2. pPerformance investigation of concrete slab track
installations in the U.s. and abroad
3. Evaluation of advantages and disadvantages of using
at-grade slab track for rapid transit purposes in the
United States
4, Economic evaluation to compare service-life costs of
at-grade slab track with those of conventional wood
tie and concrete tie ballasted track
This report summarizes work performed in these items and
recommends future research to aid development of optimum slab
track designs for U.S., transit conditions.




2. SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

Experience with concrete slab track systems in foreign
countries has shown that such track system results in decreased
maintenance and increased reliability of service. This experi-
ence alsc has indicated a generally higher initial cost of slab
track.

To evaluate the technical and economic feasibility of
using concrete slab track systems for at-grade rapid transit
track in the United States, a study was initiated by the Trans-
portation Systems Center of the Research and Special Programs
Administration in support of the Urban Mass Transportation
Administration of the U.S. Department of Transportation. A
summary of work performed in this study and recommendations for

future research are presented.

2.1 SUMMARY

The study included a literature review, inspection of slab
track installations, evaluation of advantages and disadvantages,
and an economic analysis. Results and findings of these work

items are summarized.

2.1.1 Slab Track Projects

In the past 25 years, 18 concrete slab track projects were
built by railroads and transit authorities in eight countries.
These projects utilized different concrete slab and precast unit
designs, subbase materials, and rail fastening systems,

Precast pretensioned frames and ladder units have been
used., Types of concrete slabs used have included the following:
1. Cast-in-place plain, reinforced, and continuously

reinforced

2. Cast-in-place post-tensioned

3. Precast reinforced

4. Precast pretensioned



Subbases used have included crushed stone, cement- and
asphalt-treated materials, lean concrete, and expanded poly-
styrene concrete., However, in a few cases, no subbase was pro-
vided. Generally, subbases have been placed on the compacted
subgrade, although in some cases the top subgrade layer was
stabilized with cement.

Rails were fastened to the slab by different methods,
including the following:

1. Rail fasteners with inserts embedded in the slab

during construction

2. Rail fasteners with inserts secured to prestressed or

reinforced concrete ties set into the slab during
construction

3. Rail fasteners with inserts secured to precast

concrete blocks set into the slab during construction

4. Elastomeric blocks to secure rails in grooves built

in the slab

2.1.2 Rail Fasteners

In slab track systems, fasteners were used to secure rails
either directly to the concrete slab or precast concrete ties
or blocks set into the slab. Several types of rail fasteners
have been used. These fasteners are classified into three
categories:

1. Fasteners having no provisions for adjusting rail

level or track gage ;

2. Fasteners capable of adjusting either rail level or

track gage

3. Fasteners capable of adjusting both rail level and

track gage

Generally, vertical adjustment is accomplished by insert-
ing shims between fastener base plate and concrete slab or tie,
or between fastener base plate and rail. Lateral adjustment is
accomplished by lateral shimming or by means of an eccentric

cam or tie plate adapter.




Experience has shown that vertical and lateral adjustment
capabilities are desired to maintain the design accuracy of

line and level during construction and service,

2.1.3 Methods of Construction

Construction of cast-in-place slabs have been performed
using conventional paving methods.

Installation of precast concrete slabs and ladder units
has been accomplished using cranes. In this case, preassembled
track panels were held at proper gage and alignment with special
jigs. Then, cement mortar or concrete was introduced under the
precast concrete units., Installation of track with ties par-
tially embedded in cast-in-place slabs has been performed in a
similar manner.

Also, precast concrete blocks have been installed in
freshly-placed concrete by vibration,

Subgrade preparation and subbase construction have been
performed with methods similar to those used for highway
construction,

2.1.4 Performance

Most slab track projects evaluated in this study have per-
formed satisfactorily and provided the desired objective of
substantially reducing maintenance. Generally, there has been
no significant change in level and alignment. However, there
were a few exceptions.

In one project, several problems were encountered. These
included loosening of fastening inserts, differential slab
settlement, and large thermal cracking. These problems were
attributed to the method of installing fastening inserts and
lack of a subbase.

In another project, fastening anchorages worked loose from
the concrete and excessive deflections and mudpumping occurred,
These problems were attributed to inadequate fastening insert
length, weak subgrade, and lack of subbase,



Generally, officials of railroads and transit properties
using at-grade slab track have reported better performance of
slab track as compared to cross tie ballasted track,

2.1.5 Advantages and Disadvantages

Experience with slab track in several countries indicated
that use of slab track for at-grade construction provided
numerous advantages over cross tie track. However, it intro-
duced a few undesired features.

In comparison with ballasted track, slab track provides
the following principal advantages:

1. Ballast and ties and associated maintenance are

eliminated,

2. Proper line and surface are maintained thus reducing
need for frequent surfacing and lining.

3. Rail fasteners with better lateral and longitudinal
restraint characteristics are used thus improving
track stability.

4. Because of reduced maintenance, less traffic disrup-
tion occurs.

5. With certain designs, less track damage occurs in the
event of a derailment.

In addition, possible energy savings and reduction in
rolling stock maintenance would result from the improved track
condition,

However, in comparison with ballasted track, slab track
provides the following undesired features:

1. Construction cost is generally higher,

2. Because of ballast elimination, higher noise levels

are generated,

3. It provides less flexibility for future layout
alterations.

2.1.6 Cost Analysis

An economic life comparison of concrete slab and ballasted

tie tracks was made using the present worth method. Costs
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associated with track construction and maintenance were con-
sidered. Maintenance cost items were distributed over a 50-year
period, escalated by an inflation factor and then discounted to
present worth. Comparison was made for constructing a new
transit system and for the partial renewal or extension of an
existing ballasted track.

Evaluation indicated that construction cost of slab track
is higher than that of ballasted track. However, maintenance
cost for track slab is less than that for ballasted track.
Evaluation indicated that depending on prevailing economic
conditions and specifics of the project under consideration,
concrete slab track may provide a cost advantage over ballasted

track.

2.2 RECOMMENDATIONS FOR FUTURE RESEARCH

Experiments with concrete slab track in the past 25 years
have demonstrated its superiority over ballasted track. How-
ever, life-cycle analysis of maintenance and construction costs
of concrete slab and ballasted tracks indicated that slab track
is not always less expensive. This economic analysis is based
on assumptions of service life, time and extent of maintenance
operations, and other factors,

Experience has shown that concrete slab track systems per-
formed satisfactorily under varicus traffic conditions that gen-
erally differ from those encountered on U.,S. transit systems.
To identify slab track designs suitable for the traffic and
environmental conditions encountered on U.S. transit systems
and to obtain reliable comparison of track alternatives, more
studies and field experiments are needed. The following
research areas are recommended: ‘

1. Analytical studies to develop criteria and methods

for the design of concrete slab track systems

2. Laboratory evaluation of track components to help

identify those systems suitable for track use



3. Laboratory evaluation of full-scale track sections
under simulated traffic conditions to help identify
those designs suitable for track use

4. Field testing of selected ballasted and slab track
designs under transit traffic and environmental con-
ditions to obtain long-term data of track perform-
ance, maintenance, and other factors required for a
comparison of track alternatives,

Results from the recommended research effort can be used

to develop optimum slab track designs. Thus, advantages of

slab track systems could be better utilized to benefit the U.S.
transit industry.
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3. SLAB TRACK PROJECTS

In the past 25 years, 18 concrete slab track projects were
built by railroads and transit authorities in eight countries.
These projects utilized different concrete slab and precast
unit designs, subbase materials, and rail fastening systems,

Precast pretensioned frames and ladder units have been
used. Types of concrete slabs used have included the following:

1. Cast-in-place plain, reinforced, and continuously

reinforced

2. Cast-in-place post-tensioned

3. Precast reinforced

4, Precast pretensioned

Subbases used included crushed stone, cement- and asphalt-
treated materials, lean concrete, and expanded polystyrene con-
crete. However, in a few cases, no subbase was provided. Gen-
erally, subbases have been placea on a compacted subgrade,
although in some cases the top subgrade layer was stabilized
with cement.

Rails were fastened to slabs using the following:

1. Rail fasteners with inserts embedded in the slab dur-

ing construction

2. Rail fasteners with inserts secured to prestressed or

reinforced concrete ties set into the slab during
construction

3. Rail fasteners with inserts secured to precast con-

crete blocks set into the slab during construction

4, Elastomeric blocks to secure rails in grooves built

in the slab

A summary of recent slab track projects is listed in
Table 3-1. Details of these projects are described thereafter,
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3.1 ENGLAND

Several slab track projects were built in England between
1968 and 1975. Principal projects are those at Radcliffe-on-
Trent and at Duffield. Details of these projects are described

below,

3.1.1 Radcliffe-on-Trent - Phase I

This experimental project was built in 1968-69 on a tangent
section of the Grantham-Nottingham line between Bingham and
Racliffe-on-Trent stations.(l) Track was opened to traffic
in April 1969. Traffic averaged 8,000 tons per day and included
trains with 25-ton axle loads operating at 60 mph speed.

The test track consisted of six, 236-ft long sections each
built with a different fastening system, as illustrated in
Figure 3-1. Fastening systems employed were those used by the
following railways: -

1. London‘Transport (LTE)

2. Netherlands Railway (NS)

3. French Railways (SNCF)

4. Swiss Railways (CFF)

5. British Railways Direct Laying Track (BRDL)

6. British Railways Channel Tunnel Track (BRCT)

Slabs were built on existing ballast and subballast of an
abandoned freight line. However, approximately 5.9 in. of old
ballast were removed throughout the test length to provide the
required elevation. Remaining materials consisted of a 9.1-in.
thick ballast layer and a 5.9-in. thick subballast layer placed
on a clayey subgrade. Ballast and subballast consisted of ash
and slag combination,

Subbase and abutments were built prior to slab construc-
tion. A 5.9-in. thick lean concrete subbase was placed over
the entire length. End abutments were built about 5.9 £t into
the embankment to restrain longitudinal movements, Intermediate
abutments were built at level changes to resist moments caused
by thermal and shrinkage forces. Abutment reinforcement

extended into the slabs.

-15=-
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The slab was placed with a slip-form paver. Specified
28~day cube compressive strength was 5,080 psi. Slab width was
8.53 ft. Slab thickness for the British Railways direct laying
track varied from a maximum of 13,3 in. at rail seats to a min-
imum of 10.7 in, at center, as shown in Figure 3-2, Slabs for
London Transport, Netherlands Railway, and French Railways
fasteners had essentially similar cross section with horizontal
seating and crowned slab center for drainage, as shown in
Figure 3-3. Swiss Railways fasteners were provided through
reinforced two-block ties embedded in the slab, as shown in
Figure 3-4.

Slab reinforcement consisted of two layers of longitudinal
and transverse reinforcement of 60 ksi deformed alloy steel
bars welded into cages. All cages were welded to one another
to provide continuous reinforcement for the entire slab length.
Longitudinal reinforcement was 0.62% of concrete cross section.

The Channel Tunnel track system, shown in Figure 3-5, con-
sisted of large precast base units that were grouted into a
cast-in-place slab. Unit width and height were 8.3 £t and
23.0 in., respectively. Prestressed longitudinal track beams
were placed in channels built in the base units. These beams
were supported on continuous microcellular rubber pads. Poly-
sulphide material was poured in spaces between track beam sides
and base units to provide lateral support.

For all sections, rails were continuously welded. For the
BR direct laying and Channel Tunnel sections, rails were sup-
ported continuously on flexible rubber-bonded cork pad. Pad
thickness was 0.39 and 0.18 in. for the BR direct laying and
Channel Tunnel sections, respectively. Other sections utilized
discrete pads at fastener locations.

Figures 3-6 through 3-11 show views of the different slab

track sections,

3.1.2 Radcliffe-on-Trent - Phase II

This test track is located at Radcliffe-on-Trent on the

Nottingham-Grantham Line just to the east of the concrete slab

;17_



MOVdEL SAVMTIVI HSILIYE 40 NOILIIIS SS0¥D d¥IS “Z-€ SdNoOId

L0'8 © HUaWadIOUia) 9SI9ASUD DIP __m\nl/

/

juswadJojuies |puipnyibuol DIp _.m\ml/

N

.b9-8

el

o o T

.21G g€ 92l ,OGl

-18~



SUOVYL SAYMTIVY HONHIA ANV
fAUMTIVY SANVIITHLIN ‘I¥OdSNVYL NOANOT 40 NOILDIS SSO¥D dVIS "€-¢ JIN9Iig

08 @DIp 8/ ‘JUdWaIOUIRI 8SIOASUDI FI.V

/ ro-8 >

a8 ® 8 e 0 @ / ) ®__0 o [ B ®

«0¢l

juawauoual jouipnyibuol DIp 241

._19_.




MOVAL SAVMIIVY SSIMS 40 NOILDHS SSOUD d¥YIS “v-£ HINDIA

. . []
,08 @ DIP 8 ‘lUBLIGDIOJIBI 3SIBASUDI Pll./

\I

i
L oo

-20-

100q Jaqqny

\//-

JUBWaI0IR4 |DuIpNybuoT 81} §O0|g-0M |



WHLSAS MOVdL TANNNL TINNVHD °*G-€ dJdNDId

Jun jspoasd 9)a4ouod
lﬂlc_o_ ot 4Em:uconv 920|d-u! - §S0) pPadJojuIas UIDN

swDag _xoo: 8}8JOU0D
passa4jsoid §spadId

13pINoYs U4

-21-



FIGURE 3-6. LONDON TRANSPORT TRACK

FIGURE 3-7. NETHERLANDS RAILWAY TRACK
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FIGURE 3-8. FRENCH RAILWAYS TRACK

FIGURE 3-9. SWISS RAILWAYS TRACK
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FIGURE 3-10. BRITISH RAILWAYS DIRECT-LAYING TRACK

FIGURE 3-11. BRITISH RAILWAYS CHANNEL TUNNEL TRACK
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track laid in 1969.(2'3) The 1,155-ft long track was con-

nected to the o0ld track by a 623-ft long concrete tie track,
Track was opened to traffic on June 4, 1972. Traffic averaged
2.5 million tons per vear and included trains with 25-ton axle
loads operating at 60 mph speed.

Track incorporated seven different construction types.
These included two systems typical of at-grade slab track con-
struction and five systems representing tunnel construction.
Those systems pertinent to at-grade slab track work are des-

cribed,

3.1.2.1 BR Direct Laid Slab - This 196.9-ft long slab section
was slip-formed on prepared subgrade. Alignment included a
2,110-ft radius curve and a spiral. Fastening inserts were
placed in predrilled holes using epoxy resin. Rails were sup-
ported on resilient pads.

The 7.88-ft wide slab was slip-formed with a center trough,
as shown in Figure 3-12. Thickness was 7.9 in. and 14.4 in. at
slab center and under rail seats, respectively. Two layers of

longitudinal and transverse reinforcement were used. A view of
the slab track section is shown in Figure 3-13,.

3.1.2.2 Turnout on Slab - A 230-ft long turnout slab was built
on a 4,000-ft radius curve. Slab was laid directly on the pre-
pared subgrade, One slab side was slip-formed while the other
was placed using road forms. A longitudinal trough was incor-
porated in the paved profile.

Slab width varied from 8.86 ft at the toe to to 15.7 ft at
the nose, Thickness varied from 9.8 in. at center to 15.0 in.
at rail seats. Two layers of longitudinal and transverse rein-
forcement were used, A cross section is shown in Figure 3-14.
A view of the turnout is shown in Figure 3-15.

Between heel and nose points, rails were continuously sup-
ported on rubber-bonded cork pad and fastened to the slab with
elastic-type fasteners. However, between the toe and heel
points, discrete pads were used at fastener locations.

-25-
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FIGURE 3-13. BRITISH RAILWAYS DIRECT-LAID
TRACK AT RADCLIFFE-ON-TRENT
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FIGURE 3-15. TURNOUT ON SLAB AT RADCLIFFE-ON-TRENT
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Transitions between slab track and conventional cross tie
track were provided at both ends by prestressed longitudinal
beams and cross connections forming 14.8-ft long ladder units,
as shown in Figure 3-16. A view of this transition is shown in
Figure 3-17.

3.1.3 Radcliffe-on-Trent - Phase III

In 1974, additional test sections were built at Radcliffe~-
on-Trent on. the Nottingham-Grantham Line.(4) These included
two precast prestressed concrete slab track systems.

3.1.3.1 Precast Concrete Slabs - This 240-ft long section con-

sisted of eight, 30-ft long precast prestressed concrete slabs.

Four slabs were placed directly on subgrade and four were placed
on a 9-in. thick asphalt base. A view of this section is shown

in Figure 3-18.

3.1.3.2 Precast Ladder Units - This 180-ft long section con-
sisted of six, 30-ft long precast prestressed concrete ladder
units. Units were supported on a 9-in. thick asphalt layer.
Units were bonded to the asphalt base using a polyester resin
mortar., Openings in ladder units were filled with sand asphalt,
A view of this section is shown in Figure 3-19.

3.1.4 Duffield

This test track was built at Duffield on the Sheffield-

Derby mainline, (30

Track design was based on BR's experi-
ence with slab track built at Radcliffe-on-Trent in 1969.

Track was built on the embankment of an abandoned freight
line adjacent to the mainline. After completion of construc-
tion, test track was connected to the mainline, Track was
opened to traffic in August 1972. Traffic amounted to about 15
million gross tons per year and included trains with 25-ton axle

loads operating at 80 mph speed.
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FIGURE 3-17. TRANSITION AT RADCLIFFE-ON-TRENT

FIGURE 3-18. PRECAST CONCRETE SLABS AT RADCLIFFE-
ON-TRENT
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FIGURE 3-1%. PRECAST CONCRETE LADDER UNITS AT
RADCLIFFE-ON-TRENT
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The 1.125-mile long track included an S-shaped curve with
a 9,120 £t radius and a 820-ft long intermediate tangent sec-
tion,

Slab was built using a special paving machine similar to
road paving equipment. The machine was designed to build a
656-ft length at a time and consisted of four units. These
included a paver, two reinforcement carriers, one each for top
and bottom reinforcement, and an end feeder. 1In addition, a
special machine was used to set holes for fastening inserts in
the newly paved concrete., Specified 28-day concrete cube com-
pressive strength was 5,510 psi.

The slab was 7.87 ft wide. Thickness varied from 7.9 in.
at center to 10.8 in, at rail seats, as shown in Figure 3-20.
Two layers of longitudinal and transverse reinforcement were
used, Longitudinal reinforcement was 0.67% of concrete cross
section.

End abutments and two cross walls were located at each end
of the paved length to provide longitudinal restraint. Similar
abutments were provided at both sides of a bridge along the
track.

Transitions between slab track and conventional cross tie
track were provided at both ends by prestressed concrete ladder
units similar to those used at Radcliffe-on-Trent,

Elastic type rail fasteners were used. Inserts were
installed at a 27.6 in. spacing using epoxy polyester resin or
specially formulated cement grout., Rails were supported on
0.39-in, thick continuous rubber-bonded cork pads having a neo-
prene backing on the top surface. Pads were attached to the
concrete slab using 0.47-in. wide strips of bituminous elastic
tape. A view of this section is shown in Figure 3-21.

3.2 GERMANY

Several slab track projects were built in Germany between
1967 and 1978. These projects are described below.

-34-
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FIGURE 3-21. SLAB TRACK AT DUFFIELD
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3.2.1 Hirschaid

This test section was built in 1967 at Hirschaid on the

(7,8,9,10) 14 onsisted of three

Forchheim~-Bamberg mainline.
sections utilizing precast prestressed concrete units. Two

sections had concrete slabs while the other had ladder units.

3.2.1.1 Slabs on Expanded Polystyrene Concrete Subbase - Slab
track, shown in Figure 3-22, consisted of 17.0~ft x 7.9-ft x
7.1-in. precast prestressed concrete slabs, Longitudinal and
transverse prestress were 435 and 231 psi, respectively. Slab
continuity in the longitudinal direction was provided by four
dowels encased in epoxy sealed joints,

Slabs were supported on a 13.,1-ft wide, 5.9-in, thick
expanded polystyrene concrete subbase, Subbase portions that
extended beyond the slab width were sealed with a bituminous-
lime coating and covered with ballast, Slabs were installed in

position using cranes operating on guide rails.

3.2.1.2 Slabs on Sandy-Gravel Subbase - Slab track, shown in
Figure 3-23, consisted of 11 slabs having same dimensions and
prestress as those placed on expanded polystyrene concrete sub-
base. However, slab continuity in the longitudinal direction
was provided by six prestressing rods encased in thermit-welded
jackets.,

Slabs were supported on a 1l1.5-ft wide, 3.l-in. thick lean
concrete layer that was laid on a sandy-gravel subbase having
an 8.7 in. average thickness. Deep subgrade drains were used
to lower the ground water table. 1Installation of precast slabs

was performed using cranes.

3.2.1.3 Ladder Units ~ This section consisted of 9 ladder units
of precast prestressed longitudinal and transverse beams as
shown in Figure 3-24., Each unit was 21.3 ft long and weighed
8.35 tons., Units were supported on a 11.5-ft wide, 3.1-in,
thick lean concrete layer that was laid on a sandy-gravel sub-

base having a 6.7 in. average thickness. Deep subgrade drains

-37-
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were used to lower ground water table. Ladder units were
installed using cranes,

Ladder units were connected with prestressed joint bars.
Space between longitudinal and transverse beams was filled with
ballast. The upper layer of ballast was bituminous-treated to
facilitate drainage.

Reinforced concrete abutments were built at ends of sec-
tions utilizing ladder units and slabs on sandy-gravel subbase,
to resist longitudinal forces caused by temperature changes,

An improved version of a fastening system used by the
German Federal Railway for securing rails to concrete and steel
bridges was used for all sections at Hirschaid. To obtain
accurate alignment, holes for fastening bolts were drilled on
the site after installation of precast units,

3.2.2 Rheda and Oelde

Two large scale tests of slab track were built in 1972
between Bielefeld and Hamm in the areas of Rheda and Oelde sta-

(10,11,12,13,14,15)

tions. Details of these projects are des-

cribed.

3.2.2.1 Rheda - This 2,297-ft long section incorporated a tan-
gent, a 0.3-degree curve with a 2.0-in. superelevation and a
transition spiral. Daily traffic consisted of 76 trains repre-
senting about 20,000 gross tons. Average speed was 100 mph.
However, test runs were made at speeds up to 156 mph.

Track consisted of prestressed concrete ties partially
embedded in a continuously reinforced concrete slab. The 8.5-ft
long ties were placed in position after casting the concrete
slab. The slab was 9.2 ft wide and 5.51 in. thick. Ties were
spaced at 23.6 in. center to center. The slab was supported on
a 7.9-in. thick, 11.5-ft wide expanded polystyrene concrete
subbase to provide thermal insulation and frost protection., The

-4]1-




upper 5.9 in, of subgrade was stabilized with cement, Longitu-
dinal and cross sections of track are shown in Figures 3-25 and
3-26, respectively. A view of this section is shown in Figure
3-27.

Reinforcing steel with a 61,000 psi yield strength was
used. Longitudinal reinforcement consisted of 15, 0.63-in,
diameter reinforcing bars. Transverse reinforcement consisted
of 0.32-in, diameter reinforcing bars spaced at 19.7 in. center
to center.

The slab was built with projecting stirrups. During con-
struction, track panels consisting of rails, ties, and fasten-
ings were assembled on the slab. Then, longitudinal reinforcing
bars were inserted into predrilled holes in the ties and fast-
ened to those stirrups projecting from the slab., After laying
and lining of track panels, concrete was placed into cribs and
spaces below ties.

A fastener system capable of providing vertical and lateral
adjustments was used.

Abutments were built at slab ends to restrain slab move-
ments due to temperature changes. These abutments were 55.1 in.
deep and 23.6 in., wide. Also, deep drains were provided at
track sides, Transitions between slab track and conventional
cross tie track were provided at both ends using concrete ties
placed at reduced spacing.

This project incorporated two turnouts installed at station
ends. Turnouts were supported on 321- and 36l-ft long rein-
forced concrete slabs, The 8.7-in. thick slabs were built with
a width varying from 8,5 to 17.7 ft. Reinforcement consisted
of a layer of welded wire fabric placed 2.4 in. below the slab
surface. Load transfer devices consisting of 19.7-in. long,
1.10-in. diameter dowels placed at slab mid-depth were used at
13.1 to 16.4 ft spacing. Joints were formed by sawing 0.3-in.
wide, l.4-in. deep grooves,

Turnout slabs were placed on a 17.7-in. thick lean concrete
subbase built with a width varying from 11.8 to 21.0 ft. To
control subbase cracking, joints were sawed at a 13.1 to 16.4 ft
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FIGURE 3-27. SLAB TRACK AT RHEDA
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spacing, Subbase was placed on 1l.2-in, thick expanded polysty-
rene boards to provide thermal insulation and frost protection.
These boards were placed on a 1.2- to 2.0-in. thick layer of

fine sand. Deep drains were provided on track sides. A cross

section of turnout slab track is shown in Figure 3-28.

3.2.2.2 0Oelde - This 2,133-ft long section incorporated a tan-
gent, a 0.3-degree curve with 1.57-in. superelevation, and
transition spirals., Daily traffic consisted of 76 passenger
trains representing aboﬁt 20,000 gross tons. Average speed was
100 mph. However, test runs were made at speeds up to 156 mph,
Track consisted of a 9.2-ft wide, 8.7-in, thick continu-
ously reinforced concrete slab with controlled crack formation.
Slab was supported on a 12.3-ft wide, 7.9-in. thick expanded
polystyrene concrete subbase. The subbase was built on a
13.3-ft wide, 7.9-in. thick lean concrete base overlaying a
5.9-in, thick crushed stone layer. ULongitudinal and cross sec-
tions of track are shown in Figures 3-29 and 3-30, respectively.
Longitudinal reinforcement consisted of twelve 0.63-in.

diameter steel bars with a 61,000 psi yield strength. Trans-
verse reinforcement consisted of 0,55-in., diameter deformed bars

spaced at 11.8 in. center to center., Crack control was accom-
plished by coating longitudinal reinforcing bars at 9.8 ft
intervals with bitumen and saw cutting of 0.16-in. wide, 1.6-in.
deep joints. Bituminous coating was applied over a 23.6 in.
length to prevent bond between steel and concrete in crack
region and to provide a form of elastic coupling.

Two types of direct fixation fasteners capable of providing
vertical and lateral adjustments were used. A German type
fastener was used over a 1,476 ft length. A Dutch type
fastener was used on the remaining 656 ft length. Fasteners
were installed by drilling holes for anchoring blots at 23.6
in, spacing. Bolts were installed in position using epoxy
grout,

Abutments were built at slab ends to contain longitudinal
forces caused by temperature bhanges. These abutments were
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55.1 in. deep and 23.6 in. wide. Also, deep drains were pro-
vided on track sides to minimize any reduction of subgrade

strength by moisture, Transitions between slab track and con-
ventional cross tie track were provided using concrete ties

installed at reduced spacing.

3.2.3 Karlsfeld

This project was built in 1977 on a tangent section of the
Ingolstadt-Munich mainline between Munich and Treuchtlingen.(16'17)
Daily traffic was estimated at 57,000 gross tons, It included
freight and passenger trains operating at 100 mph.

The 5,577-£t long test track included five different

designs of slab track. These are described,

3.2.3.1 Precast Concrete Slabs - The 1,312-ft long section,
shown in Figure 3-31, consisted of 9.1-ft wide, 15.6-ft long,
and 7.9-in. thick slabs supported on a 12.5-ft wide, 7.9-in.
thick cement-stabilized gravel subbase over a compacted sub-
grade. An asphalt interlayer was placed on top of the subbase

to obtain the required slab elevation. A cross section is
shown in Figure 3-32.

3.2.3.2 Precast Concrete Ladder Units - The 1,214-ft long sec-
tion, shown in Figure 3~33, consisted of 24.1-ft long, 7.9-ft
~wide, and 17.3-in. thick prestressed concrete ladder units sup-
ported on an ll.2-ft wide, i.9—in. thick cement-stabilized
gravel subbase over a compacted subgrade. Units were placed on
a bituminous interlayer to obtain the reguired slab elevation.
A cross section is shown in Figure 3-34.

3.2.3.3 Concrete Ties Set into Cast-in-Place Slab - The
1,411-ft long section, shown in Figure 3-35, was constructed in
a similar manner to that used at Rheda Station in 1972, 1t
consisted of prestressed concrete ties set into cast-in-place
continuously reinforced concrete slab. The slab was 8.5 ft
wide and 7.9 in, thick. Ties were placed at 23.6 in, center to
center, Slab was placed on an 11.8-ft wide, 7.9-in, thick
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FIGURE 3-31. PRECAST CONCRETE SLABS AT KARLSFELD
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FIGURE 3-33. PRECAST CONCRETE LADDER UNITS AT
KARLSFELD
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FIGURE 3-35. CONCRETE TIES EMBEDDED IN SLAB AT
KARLSFELD
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cement-stabilized gravel subbase over a compacted subgrade, A
cross section is shown in Figure 3-36.

3.2.3.4 Precast Concrete Blocks Set into Cast-in-place Slab -
The 820-ft long section, shown in Figure 3-37, was an B8.5-ft
wide, 7.9-in. thick cast-in-place continuously reinforced con-
crete slab. The slab had longitudinal recesses at rail seats,
Precast concrete units were placed in the recesses at 23,6-in,
spacing using grout. The slab was placed on a 10.8-ft wide,
7.9-in, thick cement-stabilized gravel subbase. A cross
section is shown in Figure 3-38.

3.2.3.5 Rubber~Booted Ties Set into Concrete Slab - The 820~ft
long section, shown in Figure 3-39, was an 8.5-ft wide, 7.9-in.
thick cast-in-place continuously reinforced concrete slab., The
slab had longitudinal recesses at rail seats. Monoblock pre-
stressed concrete ties, fitted with rubber boots at both ends,
were set into the recesses using cement grout. Tie spacing was
23.6 in. The slab was supported on a 10.8-ft wide, 7.9-in.
thick cement-stabilized gravel subbase. A filler material was
used to adjust elevation. A cross section is shown in Figure
3-40.

3.2.4 Munich-Nordring

The 164-ft long section, shown in Figure 3-41, was built
h, (18/17) 14 consisted of 32.5 x 9.8 x
4.7-in. prefabricated blocks set into a freshly cast-in-place

in 1978 near Munic

reinforced concrete slab by vibration, The 9.2-ft wide, 1ll-in.
thick siab, was built with 9.8 ft joint spacing. Slab was sup-
ported on a .1ll.5-ft wide, 11.0-in. thick cement-stabilized
gravel subbase. A cross section is shown in Figure 3-42.

3.3 FRANCE

Two slab track projects were built in France in 1970.

Details of these projects are described below.
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FIGURE 3-37. CONCRETE BLOCKS EMBEDDED IN SLAB
AT KARLSFELD
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FIGURE 3-39. RUBBER-BOOTED CONCRETE TIES SET INTO
CONCRETE SLAB AT KARLSFELD
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FIGURE 3-41. SLAB TRACK AT MUNICH-NORDRING
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3.3.1 La Grillere

This project was built in 1970 at Grillere on the Paris-

(18)  qrack alignment included curves with

Toulouse mainline,
a 262-ft radius and 0.9 to 1.0% gradients. Traffic was esti-
mated at 26,000 tons per day at a maximum speed of 72 mph.

Axle locad was estimated at 20 tons,.

The project consisted of a 410-ft long double track. Dif-
ferent designs were used for each track, as shown in
Figure 3-43,

Both tracks consisted of 23.0-ft long, 1l1l.8-ft wide,
5.9-in, thick reinforced concrete slabs. In one track, two-
block ties fitted with rubber boots were set into the concrete
slab at 27.6 in, spacing. Rails were attached to ties with
elastic-type fasteners. 1In the other track, rails were secured
directly to the concrete slab with adjustable-type fasteners
installed at 27.6 in., spacing. Fasteners were capable of pro-
vidng vertical and lateral rail adjustments,

Figures 3-44 and 3-45 illustrate the two slab track
designs.

3.3.2 Neuilly-sur-Marne

This 984-ft long test project, shown in Figure 3-46, was
pbuilt in 1970 at Neuilly-sur-Marne station on the outer ring of

the Paris region.(lg)

Track alignment included tangent and
curved sections with 2,000 and 4,200 £t radius. Traffic con-
sisted of freigh£ trains with 20-ton axle loads operating at a
56-mph speed at the rate of 100,000 tons per day.

The project consisted of three prestressed concrete slab
sections each 328 ft long. Slabs were 9.2 ft wide and 7.1 in.
thick. Each slab section was prestressed with twelve, 0.32-in,
diameter strands placed at slab mid-depth and anchored at slab
ends, Strands were encased in l1.65-in. diameter sheaths,.

Slab sections were interconnected with two 4,.9-ft long
prestressed concrete joint slabs. Additional prestressing
strands were placed in joint sections. 1In addition, two layers

of transverse reinforcement were used,
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FIGURE 3-43, SLAB TRACKS AT LA GRILLERE

FIGURE 3-~44. RUBBER-BOOTED CONCRETE TIES
SET INTO SLAB AT LA GRILLERE
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FIGURE 3-45., REINFORCED CONCRETE
SLABS AT LA GRILLERE

FIGURE 3-46. SLAB TRACK AT NEUILLY-SUR-MARNE
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After placement of prestressed concrete slabs, four,
5.1-in. tall walls were built to restrain the two-block ties
placed on top of slab, Track panels consisting of two-block
ties fitted with rubber boots, rails, and fasteners were set at
proper level and alignment between the side walls. Ties were
spaced at 27.6 in, center to center. Space around ties was
filled with cement-grout. Rails were attached to the ties with
elastic type fasteners,

A drainage filter consisting of 3,9-in, thick layers of
fine and coarse sand was placed over the subgrade. These layers
were covered with a 3,9-in., thick lean concrete base, A 7.9~in,
diameter drainage pipe was installed along the slab, as shown
in Figure 3-47. A friction reducing layer was placed between

the lean concrete base and slab,

3.4 SPAIN

A 2.6-mile long experimental slab track project was built

in 1975 between Ricla and Calatorao on the electrified Madrid-

Barcelona mainline.(20'21)

5-ft 5.7—in.‘gage.

This track was designed for a

Track, shown in Figure 3-48, consisted of a 7.9-ft wide
continuously reinforced concrete slab with a thickness varying
from 11.4 in, under the rails to 9.4 in, at slab center, Rein-
forcement consisted of longitudinal and transverse steel placed
approximately 5.7 in. from the slab bottom., Longitudinal rein-
forcement consisted of twenty 0.63-in. diameter bars repre-
senting 0.64% of concrete cross section, Transverse reinforce-
ment was of 0.63-in, diameter bars placed at 27.6 in, spacing.
The slab was placed on a 13.1-ft wide, 5.9-in. thick lean con-
crete base, Figure 3-49 shows slab cross section.

Continuocusly welded rails were supported on a 0.39-in.
thick continuous rubber-bonded cork pad. The rails were fastened
to the slab at a 27.6 in. spacing with elastic type fasteners.
Fastener inserts were installed in preformed holes using epoxy
grout,
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FIGURE 3-48, SLAB TRACK BETWEEN RICLA AND CLATORAQ
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The slab was slip-formed using a special paving machine,
Transitions between slab and adjoining track consisted of two
longitudinal and three transverse concrete beams as shown in
Figure 3-50.

This project incorporated a crossover supported on a con-
crete slab,

3.5 THE NETHERLANDS

A B820-ft long test section was built in 1976-77 near Deurne
on a tangent section of the Eindhoven-Venlo mainline.(zz)
Traffic density was estimated at 7.5 million gross tons per
year, Operatina speed averaged 100 mph,

Track consisted of 19.7-ft long precast reinforced concrete
units. Units were 7.4 ft wide and 21.7 in. thick. Longitudinal
reinforcement was 2% of the concrete cross section. No load
transfer devices were used between units,

Slabs were supported on a 2.0-in. thick concrete layer
placed over a sandy subgrade of an abandoned embankment., The
embankment had been compacted by about 100 years of train
traffic.

Specially-shaped channels were formed in the slab during
fabrication to accommodate rails. Rails were secured in posi-
tion using wedges of cork elastomer molded into the cavity
between rail and slab., Rails were continuously supported on a
rubber-bonded cork pad.

Figure 3-51 shows details of the system,

3.6 UNITED STATES

Construction of a slab track on The Long Island Rail Road
was completed in 1980.(23’24) Traffic started in 1979 on
several slab track sections located on the Metropolitan Atlanta

Rapid Transit Authority lines. Another slab track built in

i (25,26)

1974 as a part of the Kansas Test Trac was taken out

of service in 1976.(27) These projects are described,.
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FIGURE 3-50. TRANSITION‘ BETWEEN SLAB TRACK AND
BALLASTED TRACK
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